The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1  1  1  1  1  1  1  X  1  1  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 0  X  0  0  0  0  X  X  X a*X  0  X a^2*X a*X a^2*X a*X  X  X a*X  0 a^2*X a*X  X a*X  0  X  0 a^2*X a*X  X a^2*X a*X  0  0 a*X a*X  X  X a*X a*X  X  0  0 a*X a^2*X  0  0  X a*X  0  0 a^2*X a*X a^2*X a*X  0 a^2*X  X a*X  X  X  X  X  X  0  X  0 a*X  0 a*X  X a^2*X a*X a*X  X  X a*X  X a^2*X  X  0 a^2*X  0  0 a^2*X a*X a*X a*X  X  0  0  0
 0  0  X  0  0  X a^2*X a*X a*X a*X  0  0 a*X a*X  0 a*X a^2*X a*X a^2*X a^2*X  0  X a^2*X  0 a^2*X  0 a*X a*X a*X a*X a^2*X  0 a^2*X a^2*X  0  0 a^2*X  X a*X a^2*X  X  X  0  X  0 a*X a*X  0 a^2*X a^2*X a^2*X a*X a^2*X a^2*X  X  X  X  X a^2*X  X  X  X a^2*X a*X a*X  0 a*X  X  0  0  0 a^2*X a^2*X a^2*X a^2*X a*X a^2*X a^2*X a*X a^2*X a^2*X  0  X  0 a*X a*X a*X a^2*X a^2*X  X a^2*X  0
 0  0  0  X  0 a^2*X  0  X a*X a^2*X  X  X  X  0  X a^2*X  X  X a^2*X a^2*X a^2*X a*X  0 a^2*X a^2*X  0  X a*X  0 a^2*X  0 a*X  X  X a*X  0 a*X  X a*X  0  X a*X a^2*X a*X a^2*X  X a*X a*X a^2*X a*X a*X a*X a*X a^2*X  0 a*X  0  0  0  0 a^2*X a^2*X  X  0 a*X a^2*X  0  0  X  X a^2*X a^2*X  X a^2*X  0  0 a*X a^2*X  0 a^2*X a*X a*X  0 a^2*X a*X  X  X a*X a*X a^2*X a*X  X
 0  0  0  0  X  X  X a^2*X  X  X  X a*X  0  0  0 a*X  X a*X a^2*X a^2*X a*X  0 a*X  X a*X a*X  0  0 a^2*X a^2*X a^2*X a*X  X  0  0  X a*X  X a^2*X  X a^2*X  X  X a^2*X  0 a*X  0  X  0  0  X a*X  X a*X a^2*X a*X a^2*X  X  0  0 a^2*X  X a^2*X  X a^2*X  X a^2*X  0 a*X  0 a^2*X a^2*X a^2*X  X  X a^2*X  0  X  0 a^2*X a^2*X  X  X a^2*X  X a^2*X  X a^2*X  X a^2*X a*X  0

generates a code of length 92 over F4[X]/(X^2) who�s minimum homogenous weight is 260.

Homogenous weight enumerator: w(x)=1x^0+72x^260+180x^264+48x^267+174x^268+432x^271+162x^272+1296x^275+117x^276+1296x^279+57x^280+48x^284+42x^288+51x^292+27x^296+33x^300+12x^304+12x^308+6x^312+12x^316+9x^320+3x^324+3x^332+3x^356

The gray image is a linear code over GF(4) with n=368, k=6 and d=260.
This code was found by Heurico 1.16 in 0.398 seconds.